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Abstract. We consider the spin-glass phase of the Sherrington-Kirkpatrick model in the presence of a
magnetic field. The series expansion of the Parisi function q(x) is computed at high orders in powers of
τ = Tc−T and H . We find that none of the Parisi-Toulouse scaling hypotheses on the q(x) behavior strictly
holds, although some of them are violated only at high orders. The series is resummed yielding results
in the whole spin-glass phase which are compared with those from a numerical evaluation of the q(x).
At the high order considered, the transition turns out to be third order on the Almeida-Thouless line, a
result which is confirmed rigorously computing the expansion of the solution near the line at finite τ . The
transition becomes smoother for infinitesimally small field while it is third order at strictly zero field.

PACS. 75.10.Nr Spin-glass and other random models – 02.30.Mv Approximations and expansions

Mean-field theory is commonly used as a starting point
(i.e. zeroth order approximation) in the perturbative
treatment of finite dimensional, short-ranged systems. As
such, it is usually very simple, almost trivial, in ordinary
systems like the ferromagnet. On the contrary, the glassy
phase of disordered systems is highly non-trivial even in
mean-field theory: in the Ising spin glass, the prototype
of such systems, the thermodynamics of the low tempera-
ture phase is built on an ultrametrically structured order
parameter matrix proposed by Parisi (see [1] and some of
the reprints from this book). Although the region close to
the zero magnetic field critical point is easily accessible,
to get quantitative results for physical observables deep
inside the glassy phase is a rather difficult task.

The survival of the mean-field picture, at least qual-
itatively, in finite dimensional, short-ranged systems has
been a controversial and long debated problem in the last
decades. It is clear that a deeper, and more precise, un-
derstanding of the mean-field thermodynamics of the spin
glass phase is a prerequisite to make any comparison, nu-
merical or analytical, with physical systems. The Parisi-
Toulouse (PaT) hypotheses of reference [4] (also known as
projection hypotheses) were not only a first step in this
direction, but had the advantage of simplicity, a common
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feature of mean-field theory. An extension to systems with
an average ferromagnetic interaction followed soon [5],
whereas a scaling assumption for the order parameter
function q(x) was put forward in [6], see equations (6).
It was first pointed out in reference [6] that the whole set
of hypotheses cannot be exact, as it leads to inconsistency.
An argument was presented in reference [7] that the pro-
jection hypothesis for the magnetization contradicts the
maximization rule for the free energy, at least near the in-
stability, Almeida-Thouless (AT), line [8]. An analysis of
the exact, diffusion-like differential equations describing
the thermodynamics of the mean-field glassy phase was
presented in [9]. Using series expansions, with relatively
short series, it was concluded in this paper that the order
parameter function q(x) and the breakpoint x1 depend
only on temperature, and, among the set of statements of
the PaT hypotheses, these are the only ones which may
be exact. The order of the transition when crossing the
AT-line can also be deduced from the projection hypoth-
esis, and it turns out to be second order in the Ehrenfest
sense, at least in finite field [4]. (The magnetic susceptibil-
ity has, for example, a finite, albeit small jump.) Neverthe-
less, subsequent calculations and arguments [7,10] seemed
to provide evidence that the transition is third order, just
as in zero magnetic field. Recent numerical simulations on
the SK model in a field are discussed in [14].

In this work we study the Parisi solution of the
Sherrington-Kirkpatrick (SK) model in the presence of an
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external field through the methods developed in [12]. In
particular, the computation of the high order expansion
of q(x) in power of the reduced temperature and of the
field allows us to finally answer the problem of the valid-
ity of the PaT hypotheses [4–6]. The PaT hypotheses are
a set of scaling relations concerning the behavior of the
function q(x) under changes of the external fields. As we
shall briefly recall below, they allow to compute all the
quantities of interest of the spin glass phase without solv-
ing the Parisi equations but simply using the SK replica
symmetric solution evaluated at the AT line [8]. It turned
out from our analysis that no one of the PaT statements
strictly holds, some of them, however, are so highly con-
sistent with the numerical estimates of the q(x) that their
approximate nature can be detected only at high order in
the series expansion.

If one evaluates numerically the q(x), one finds that
the magnetization seems to be independent of the temper-
ature in the spin glass phase; similarly the self-overlap qEA

seems to be independent of the magnetic field. This mo-
tivated the PaT hypotheses which assume this fact to be
exactly true, i.e.

M(H, T ) = M(H), qEA(T, H) = qEA(T ). (1)

As a consequence, the free energy is additive, i.e. we have
F (T, H) = F1(T ) + F2(H). Furthermore, the energy is
also additive, while the entropy depends only on the tem-
perature. The previous equations show that if we want
to compute M(H), we can compute the magnetization
at any temperature in the spin glass phase provided the
field is equal to H ; in particular, it can be computed at
the boundary of the spin glass phase, i.e. on the AT line,
where the replica symmetric solution is the correct one:

M(H) = M(H, T ) = MSK(H, TAT (H)). (2)

Here the function HAT (T ), or its inverse TAT (H), param-
eterizes the AT line. The argument can be generalized to
any quantity that depends on either the temperature, or
the magnetic field alone. For instance, we have

S(T ) = S(T, H) = SSK(T, HAT (T )), (3)

qEA(T ) = qEA(T, H) = qSK(T, HAT (T )). (4)

Furthermore, if we consider the expression for the energy

E = − 1
2T

(
1 −

∫ 1

0

q2(x)dx

)
− MH, (5)

we see that a possible way to have an additive char-
acter is to guess proper scaling laws also for q0(H, T )
and q(x, H, T ). This is at the origin of the full PaT scaling
laws: 


q0(H, T ) = q0(H) = qSK(H, TAT (H)),

q(x, T, H) = q(x, T ) = qu(x/T ),

qEA(T, H) = qEA(T ).

(6)

The universal temperature independent function qu(y) can
be computed from the relation

∫ 1

0
q(x)dx = 1 − T , which

holds in zero magnetic field, and the knowledge of qEA(T ).
Therefore any quantity of interest can be determined sim-
ply projecting it from the AT line, where the SK solution
is correct, down into the replica symmetry broken (RSB)
phase; for this reason the PaT hypotheses are also known
as “projection hypotheses”. In [6] it was already noticed
that the PaT hypotheses must be wrong somehow, this
was deduced indirectly comparing the values of different
expressions for the specific heat. Instead, here we are able
to check the relations (6) directly.

The equations determining q(x) follows from Parisi dif-
ferential equation [2] and the stationarity of the free en-
ergy. They have appeared many times in the literature,
see references [9,11–13], therefore we choose not to report
them here. Besides the function q(x) they involve two aux-
iliary functions P (x, y) and m(x, y). Introduced as mathe-
matical tools to perform the computation, these functions
have also a physical interpretation: the function m(x, y)
represents the magnetization of a given site properly av-
eraged (see Chap. V in Ref. [1]) on a cluster of states with
mutual overlap q(x) in presence of a frozen effective field y,
accordingly m(1, y) = tanh(βy); the function P (x, y)
represents the probability distribution function over the
disorder of the effective field y, in particular P (1, y) rep-
resents the distribution of the cavity field [1]. These func-
tions have also received a dynamical interpretation in [13].

We have solved the equations by series expansions
around H = 0 and T = Tc = 1. In the following we
report the power series of the quantities of interest at
lowest orders. To make easier the comparison between or-
der of magnitude we write down the series expansion in
terms of the variables τ = 1 − T and p = (3/4)1/3H2/3.
They are intended to be of the same order of magnitude
such that the expressions O(k) below corresponds to terms
of the form τ ipk−i (i = 0, . . . , k). Consistently we have
qEA(T, H) = τ +O(2) and q0(H, T ) = p+O(2). The com-
putation has been carried on up to 15th order in the order
parameter by methods similar to those described in ref-
erence [12]. The only fact to take care is that having two
variables to expand on, time and memory grow very fast
with order, therefore we reduced the problem to a single-
variable one considering temperature-dependent values of
the field, i.e. we first computed the expansions at 15th
order in τ assuming p = τ/m for m = 2, 3 . . . 16, and later
we reconstructed the p-dependence of the various quanti-
ties. The series are supposed to be valid for small τ and p;
although they are non-convergent they can be resummed
through the methods discussed in reference [12] yielding
precise results in the whole spin-glass phase

q0(H, T ) = p

(
1 +

2 τ

3
− 13 τ2

9
+

256 τ3

81

)

+ p3

(
−4

5
+

32 τ

5

)
− 56 p4

27
+ O(5), (7)

qEA(T, H) = τ + τ2 − τ3 +
5 τ4

2
− 171 τ5

10
+

1077 τ6

10

+ p5

(
8
5
− 208 τ

15

)
− 16 p6

9
+ O(7), (8)
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q(x, T, H) − q(x, T, 0) = p5

(
32
5

− 256τ

15
+

3808τ2

45

)

+ p6

(−64
9

+
64τ

3

)
+

2144
35

p7

+
(−132 p5

5
+

88 p6

3
+

448 p5 τ

5

)
x

+
312 p5 x2

5
+ O(8), (9)

f(T, H) = −(1 − τ) ln 2 − 1
4
− τ

4
− τ2

4
− τ3

12
+

τ4

24

− τ5

120
+

3 τ6

20
− 79 τ7

140
+

1679 τ8

560
− 2 p3

3

+
2 p5

5
− 8 p6

27
− 11 p7

35
+

50 p8

27

+ p5

(
−4 τ

15
+

34 τ2

45
− 872 τ3

405

)

+ p6

(
8 τ

27
− 8 τ2

9

)
+

−52 p7 τ

105
+ O(9). (10)

The expansions of energy and magnetization have been
computed from the following formulas [9,12,13]

M =
∫

P (x, y)m(x, y) dy (11)

E = −β

2

(
1 −

∫ 1

0

q2(x)dx

)
− MH. (12)

It turned out that they verify all the usual thermodynamic
relations such as S = −∂f/∂T 1 and m = −∂f/∂H .

From our analysis the following conclusions can be
drawn regarding the PaT scaling hypothesis.
– qEA(T, H) = qEA(T ). This scaling law is violated

in the expansion in power of τ and p at order p5

(i.e. H10/3) which means fifth order in the height
q0(T, H) of the first plateau. As a consequence, such
a violation is hardly seen numerically, and the PaT
approximation qEA(T ) = qSK(T, HAT (T )) is excel-
lent at high temperature. We note that if this rela-
tion were true, the expansion of qEA(T ) around T = 0
should read qEA(T ) = 1 − 3/2T 2 + O(T 3). This is
the expression which is valid on the AT line while the
true expression is qEA(T ) = 1 − αT 2 + O(T 3) with
α = 1.60 ± 0.01 obtained resumming the expansion in
power of τ and numerically [12]. In Figure 1 we plot
qEA(T, H) − qEA(T, 0) at fixed T as a function of the
magnetic field. The data were obtained from the series
expansions by the resummation procedures discussed
in reference [12].

1 In reference [9], it was suggested that this thermodynamic
relation may not be valid in the spin glass phase. The argument
was based on an extrapolation of relatively low order results.
It turns out from the analysis of the higher order terms that
quantities which were assumed in [9] to depend on the temper-
ature alone, do have a magnetic field dependence too. These
findings change the conclusions basically, leading to a support
of the validity of that thermodynamic relation.
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Fig. 1. Plot of qEA(T, H) − qEA(T, 0) at fixed T = 0.6 as a
function of H for 0 ≤ H ≤ HAT (T ) = 0.3826, the straight line
is qSK(T, HAT (T ))− qEA(T, 0) = 0.50689 − 0.50504 = 0.00184
at T = 0.6. The data were obtained by the point-by-point
procedure for multivariate expansions [12] using the (7, 7) Padé
approximant. For small H , the data fit a power-law behavior
0.053854 H10/3.

– q(x, T ) = qu(βx) is violated near the critical temper-
ature, as can be seen from the series expansion [12].
However, the scaling is a very good approximation in
a wide range of temperatures. It becomes exact in the
limit T → 0 and x/T → 0. A consequence of this scal-
ing law would be limT→0 x1 = 1/2 [6], while the real
value turns out to be 0.548±0.005 [12]. From the above
power series it can be also deduced that x1(T, H) picks
up a small dependence on H , again proportional to p5

(i.e. H10/3).
– q(x, T, H) = q(x, T ). This scaling law is violated in the

expansion in power of τ and p at order p5 (i.e. H10/3)
which means fifth order in the height q0(T, H) of the
first plateau. As for qEA(T ), the deviation is very dif-
ficult to be seen numerically. Notice that this scal-
ing law is also valid near Tc when the more stringent
q(x, T ) = qu(x/T ) is not verified. We have checked at
15th order that all the coefficients in the expansion of
q(x, T, H) in power of x pick up corrections propor-
tional to p such that the lowest power of p is always p5

(i.e. H10/3). This is likely to remain true at all orders.
– q0(H, T ) = q(H). This scaling law is violated too.

However, at all values of the magnetic field the be-
havior of the function q0(H, T ) is similar to that of
Figure 2 obtained by resumming the series expan-
sion. Its value increases linearly from the PaT value
at T = TAT (H) while lowering the temperature, but
it goes rapidly to a constant value at low temperature.
Furthermore, at all fields the difference between the
PaT value q0(H, TAT (H)) and q0(H, 0) is always of or-
der 10−2. Actually, this is the only violation of the PaT
scaling which can be easily seen numerically.

– F (T, H) = F1(T )+F2(H). The first term in the expan-
sion in power of τ and p which violates this additive
law is τp5 i.e. τH10/3, a sixth order term. As a conse-
quence, the deviation from the PaT entropy (3) is only
fifth order, and again it is a very good approximation.
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Fig. 2. Plot of q0(H,T ) at fixed H = 0.5 as a function
of T for 0 ≤ T ≤ TAT (H) = 0.5351, the straight line is
qSK(H,TAT (H)) = 0.5951 at H = 0.5. The data were ob-
tained by the point-by-point procedure for multivariate expan-
sions [12] using the (7, 7), (6, 8) and (8, 6) Padé approximants.

The same is true for the PaT magnetization (2). We
have checked at very high order in the expansion that
the lowest power of p in the mixed terms is always p5

(i.e. H10/3), i.e. fifth order in the height q0 of the first
plateau, a result that is likely to be valid at all tem-
peratures, explaining the goodness of the PaT approx-
imation in the whole RSB phase. Indeed, it turns out
that the approximation q(x, T, H) = q(x, T, 0) breaks
down at fifth order in the expansion in powers of q0 at
a given finite τ . Therefore we expect that at all tem-
peratures the corrections to the PaT estimates are of
order q5

0 , and become relevant only at very high fields.
In particular, the field may be expressed up to fourth
order in q0 in terms of the function q(x, T, 0), we have
indeed h2 = 2/(3 Tq′(0, T ))q3

0 + 0 q4
0 + O(q5

0); this ex-
plains why the scaling q0(H, T ) = q(H) is best verified
at low temperature, since Tq′(0, T ) tends to the con-
stant value 0.743 ± 0.002 for T → 0 [12].

The predictions from the perturbative expansions have
been compared with those from the numerical solution
of the equations for the q(x) using the high precision
technique introduced in reference [12]. By comparing the
H = 0 with the H �= 0 solution in all cases we found
a rather good agreement with analytical results and the
violation of the PaT scaling can be appreciated.

The series expansion at high orders allows us to safely
determine the order of the transition on the AT line. By
making an expansion of the replica symmetric (RS) solu-
tion near the transition line the following conclusions can
be drawn.

– The RS-RSB transition is third order, i.e. all the pos-
sible derivatives of the free energy (temperature, field
and mixed) up to second order, inclusively, are contin-
uous along the AT line. All higher order derivatives are
discontinuous, and not divergent, at a generic point on
the AT line.

– Near the critical point (τ = 0, H = 0) the situation is
more complicated. First of all, we note that the RS free

energy is singular at this point, therefore its derivatives
depend on how this point is approached. For instance,
temperature derivatives of the RS free energy higher
than the fifth are divergent approaching the critical
point on the AT line, while they are regular on the
line (H = 0, T > 1).

– Approaching the critical point (τ = 0, H = 0) along
the AT line, the discontinuity in the third field deriva-
tive goes to zero as

√
τ , while the fourth deriva-

tive of the RS and RSB free energy (and also their
difference) diverge. This fourth derivative with re-
spect to the magnetic field is essentially the non-
linear susceptibility, and it can be expressed, by a
fluctuation-dissipation-like formula, in term of the so-
called longitudinal correlation function (GL). GL be-
comes identical with the spin glass susceptibility in ex-
actly zero magnetic field, and diverges at Tc (τ = 0),
although it remains finite elsewhere.

– The discontinuities in the third and fourth tempera-
ture derivatives also go to zero while approaching the
critical point along the AT line, only the fifth temper-
ature derivative has a finite discontinuity in this limit.
As already mentioned, higher temperature derivatives
of the RS free energy diverge at Tc, while the RSB
derivatives are regular. Therefore, if we consider only
temperature derivatives, the RS-RSB transition be-
comes fifth order near the critical point. This can be
understood noticing that, while approaching the criti-
cal point from the left along the AT line, the RS solu-
tion, valid above the line, is similar to the (unstable)
RS solution at T < 1 and H = 0 whose free energy
differs from the RSB free energy at fifth order in τ .
This behaviour of the temperature derivatives on the
AT line in the H → 0 limit is markedly different from
that at H strictly zero. Indeed at H = 0 we must con-
sider the T > 1 RS solution whose free energy differs
from the RSB free energy at third order in τ , as can be
checked using FRS = −1/(4T )−T log 2 valid for T > 1.

These results were obtained analyzing very long series
and are rather safe, however to confirm them we performed
a series expansion of the RSB solution near the AT line in
power of dh = h − hAT at fixed temperature. This is an
improvement on the result of [10] where such an expansion
was obtained using a 1RSB function instead of the correct
full RSB q(x). This expansion allows to compute exactly
the derivatives of the RSB free energy on the AT line.
As expected we have found that the first and second field
derivatives of the RS and RSB free energies are continu-
ous on the AT line. In general we have observed that in
order to determine the free energy at order dhn it is suffi-
cient to know q(x) at order dhn−2 instead of order dhn−1

which would be expected by power counting. Therefore
the RS solution, which is the zeroth order approximation,
gives the correct free energy up to second order in dh. The
coefficients of this expansions depend on integrals of the
form

mj =
1√
2πq

∫ +∞

−∞
e−y2/(2q) tanh[βy + βH ]jdy (13)
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evaluated on the AT line. For instance the second field
derivative reads

∂2F

∂H2
(T , HAT (T )) =

β

1 + (qAT − 1)β2

×
(
qAT − 1 − 2qAT β2 + q2

AT β2

− β2
(
−1 + M2

AT − 2MAT m3 + m3
2
))

.

(14)
The breakpoint reads

x1(T, HAT (T )) =
2(−2 + 2β2 − 3qAT β2 + β2m6)

3 − 2β2 + 3qAT β2 − β2m6
· (15)

It is interesting to notice that the T → 0 limit of the
breakpoint is exactly 1/2 as predicted by the PaT hy-
potheses in an independent way and at variance with the
(T = 0, H = 0) value which is 0.548± 0.005 [12].
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